Sirius – Astronomy

Excerpted from Wikipedia:

Sirius (/ˈsɪriəs/) is the brightest star in the night sky. Its name is derived from the Greek word Σείριος (Seirios, lit. ‘glowing’ or ‘scorching’). The star is designated α Canis Majoris, Latinized to Alpha Canis Majoris, and abbreviated Alpha CMa or α CMa. With a visual apparent magnitude of −1.46, Sirius is almost twice as bright as Canopus, the next brightest star. Sirius is a binary star consisting of a main-sequence star of spectral type A0 or A1, termed Sirius A, and a faint white dwarf companion of spectral type DA2, termed Sirius B. The distance between the two varies between 8.2 and 31.5 astronomical units as they orbit every 50 years.

Sirius appears bright because of its intrinsic luminosity and its proximity to the Solar System. At a distance of 2.64 parsecs (8.6 ly), the Sirius system is one of Earth’s nearest neighbours. Sirius is gradually moving closer to the Solar System, so it is expected to slightly increase in brightness over the next 60,000 years. After that time, its distance will begin to increase, and it will become fainter, but it will continue to be the brightest star in the Earth’s night sky for approximately the next 210,000 years. Sirius A is about twice as massive as the Sun (M☉) and has an absolute visual magnitude of +1.42. It is 25 times as luminous as the Sun, but has a significantly lower luminosity than other bright stars such as Canopus or Rigel. The system is between 200 and 300 million years old. It was originally composed of two bright bluish stars. The more massive of these, Sirius B, consumed its resources and became a red giant before shedding its outer layers and collapsing into its current state as a white dwarf around 120 million years ago.

Sirius is known colloquially as the “Dog Star”, reflecting its prominence in its constellation, Canis Major (the Greater Dog).The heliacal rising of Sirius marked the flooding of the Nile in Ancient Egypt and the “dog days” of summer for the ancient Greeks, while to the Polynesians, mostly in the Southern Hemisphere, the star marked winter and was an important reference for their navigation around the Pacific Ocean.


Observational history

The brightest star in the night sky, Sirius is recorded in some of the earliest astronomical records. Its displacement from the ecliptic causes its heliacal rising to be remarkably regular compared to other stars, with a period of almost exactly 365.25 days holding it constant relative to the solar year. This rising occurs at Cairo on 19 July (Julian), placing it just before the onset of the annual flooding of the Nile during antiquity.Owing to the flood’s own irregularity, the extreme precision of the star’s return made it important to the ancient Egyptians, who worshipped it as the goddess Sopdet (Ancient Egyptian: Spdt, “Triangle”;[a] Greek: Σῶθις, Sō̂this), guarantor of the fertility of their land.[b]

The ancient Greeks observed that the appearance of Sirius as the morning star heralded the hot and dry summer and feared that the star caused plants to wilt, men to weaken, and women to become aroused. Due to its brightness, Sirius would have been seen to twinkle more in the unsettled weather conditions of early summer. To Greek observers, this signified emanations that caused its malignant influence. Anyone suffering its effects was said to be “star-struck” (ἀστροβόλητος, astrobólētos). It was described as “burning” or “flaming” in literature. The season following the star’s reappearance came to be known as the “dog days”. The inhabitants of the island of Ceos in the Aegean Sea would offer sacrifices to Sirius and Zeus to bring cooling breezes and would await the reappearance of the star in summer. If it rose clear, it would portend good fortune; if it was misty or faint then it foretold (or emanated) pestilence. Coins retrieved from the island from the 3rd century BCE feature dogs or stars with emanating rays, highlighting Sirius’s importance. The Romans celebrated the heliacal setting of Sirius around 25 April, sacrificing a dog, along with incense, wine, and a sheep, to the goddess Robigo so that the star’s emanations would not cause wheat rust on wheat crops that year.

Bright stars were important to the ancient Polynesians for navigation of the Pacific Ocean. They also served as latitude markers; the declination of Sirius matches the latitude of the archipelago of Fiji at 17°S and thus passes directly over the islands each sidereal day. Sirius served as the body of a “Great Bird” constellation called Manu, with Canopus as the southern wingtip and Procyon the northern wingtip, which divided the Polynesian night sky into two hemispheres. Just as the appearance of Sirius in the morning sky marked summer in Greece, it marked the onset of winter for the Māori, whose name Takurua described both the star and the season. Its culmination at the winter solstice was marked by celebration in Hawaii, where it was known as Ka’ulua, “Queen of Heaven”. Many other Polynesian names have been recorded, including Tau-ua in the Marquesas Islands, Rehua in New Zealand, and Ta’urua-fau-papa “Festivity of original high chiefs” and Ta’urua-e-hiti-i-te-tara-te-feiai “Festivity who rises with prayers and religious ceremonies” in Tahiti.

Discovery of Sirius B

Hubble Space Telescope image of Sirius A and Sirius B. The white dwarf can be seen to the lower left. The diffraction spikes and concentric rings are instrumental effects.

In 1844, the German astronomer Friedrich Wilhelm Bessel deduced from changes in the proper motion of Sirius that it had an unseen companion. On 31 January 1862, American telescope-maker and astronomer Alvan Graham Clark first observed the faint companion, which is now called Sirius B, or affectionately “the Pup”. This happened during testing of an 18.5-inch (470 mm) aperture great refractor telescope for Dearborn Observatory, which was one of the largest refracting telescope lenses in existence at the time, and the largest telescope in the United States. Sirius B’s sighting was confirmed on 8 March with smaller telescopes.

The visible star is now sometimes known as Sirius A. Since 1894, some apparent orbital irregularities in the Sirius system have been observed, suggesting a third very small companion star, but this has never been confirmed. The best fit to the data indicates a six-year orbit around Sirius A and a mass of 0.06 M☉. This star would be five to ten magnitudes fainter than the white dwarf Sirius B, which would make it difficult to observe. Observations published in 2008 were unable to detect either a third star or a planet. An apparent “third star” observed in the 1920s is now believed to be a background object.

In 1915, Walter Sydney Adams, using a 60-inch (1.5 m) reflector at Mount Wilson Observatory, observed the spectrum of Sirius B and determined that it was a faint whitish star. This led astronomers to conclude that it was a white dwarf—the second to be discovered. The diameter of Sirius A was first measured by Robert Hanbury Brown and Richard Q. Twiss in 1959 at Jodrell Bank using their stellar intensity interferometer. In 2005, using the Hubble Space Telescope, astronomers determined that Sirius B has nearly the diameter of the Earth, 12,000 kilometres (7,500 mi), with a mass 102% of the Sun’s.

{X-ray image from Chandra shows Sirius B is hotter than Sirius A. It is estimated that Sirius B became a white dwarf around 124 million years ago. It went main sequence, red giant, white dwarf. This pair are a lot younger than our sun something like 250 million years young.}

The Chandra X-ray image of Sirius A & B, a double star system located 8.6 light years from Earth, shows a bright source and a dim source. The central bright source is Sirius B, a dense white dwarf star with a surface temperature of about 25,000 degrees Celsius. The dim source (slightly above and to the right of Sirius B) is Sirius A, a normal star more than twice as massive as the Sun. The spoke-like pattern of light is an instrument artifact due to the transmission grating. The white dwarf, Sirius B, has a mass equal to the mass of the Sun packed into a diameter that is 90% that of the Earth. The gravity on the surface of Sirius B is 400,000 times that of Earth!



Sirius (bottom) and the constellation Orion (right). The three brightest stars in this image – Sirius, Betelgeuse (top right), and Procyon (top left) – form the Winter Triangle. The bright star at top center is Alhena, which forms a cross-shaped asterism with the Winter Triangle.

With an apparent magnitude of −1.46, Sirius is the brightest star in the night sky, almost twice as bright as the second-brightest star, Canopus. From Earth, Sirius always appears dimmer than Jupiter and Venus, as well as Mercury and Mars at certain times. Sirius is visible from almost everywhere on Earth, except latitudes north of 73° N, and it does not rise very high when viewed from some northern cities (reaching only 13° above the horizon from Saint Petersburg). Due to its declination of roughly −17°, Sirius is a circumpolar star from latitudes south of 73° S. From the Southern Hemisphere in early July, Sirius can be seen in both the evening where it sets after the Sun and in the morning where it rises before the Sun.  Along with Procyon and Betelgeuse, Sirius forms one of the three vertices of the Winter Triangle to observers in the Northern Hemisphere.

Sirius can be observed in daylight with the naked eye under the right conditions. Ideally, the sky should be very clear, with the observer at a high altitude, the star passing overhead, and the Sun low on the horizon. These observing conditions are more easily met in the Southern Hemisphere, due to the southerly declination of Sirius.

The orbital motion of the Sirius binary system brings the two stars to a minimum angular separation of 3 arcseconds and a maximum of 11 arcseconds. At the closest approach, it is an observational challenge to distinguish the white dwarf from its more luminous companion, requiring a telescope with at least 300 mm (12 in) aperture and excellent seeing conditions. After a periastron occurred in 1994,[c] the pair moved apart, making them easier to separate with a telescope. Apoastron occurred in 2019,[d] but from the Earth’s vantage point, the greatest observational separation will occur in 2023, with an angular separation of 11.333″.

At a distance of 2.6 parsecs (8.6 ly), the Sirius system contains two of the eight nearest stars to the Sun, and it is the fifth closest stellar system to the Sun. This proximity is the main reason for its brightness, as with other near stars such as Alpha Centauri and in contrast to distant, highly luminous supergiants such as Canopus, Rigel or Betelgeuse. It is still around 25 times more luminous than the Sun.  The closest large neighbouring star to Sirius is Procyon, 1.61 parsecs (5.24 ly) away. The Voyager 2 spacecraft, launched in 1977 to study the four giant planets in the Solar System, is expected to pass within 4.3 light-years (1.3 pc) of Sirius in approximately 296,000 years.


Etymology and cultural significance

The proper name “Sirius” comes from the Latin Sīrius, from the Ancient Greek Σείριος (Seirios, “glowing” or “scorcher”). The Greek word itself may have been imported from elsewhere before the Archaic period, one authority suggesting a link with the Egyptian god Osiris. The name’s earliest recorded use dates from the 7th century BCE in Hesiod’s poetic work Works and Days. In 2016, the International Astronomical Union organized a Working Group on Star Names (WGSN) to catalog and standardize proper names for stars. The WGSN’s first bulletin of July 2016 included a table of the first two batches of names approved by the WGSN; which included Sirius for the star α Canis Majoris A. It is now so entered in the IAU Catalog of Star Names.

Sirius has over 50 other designations and names attached to it. In Geoffrey Chaucer’s essay Treatise on the Astrolabe, it bears the name Alhabor and is depicted by a hound’s head. This name is widely used on medieval astrolabes from Western Europe. In Sanskrit it is known as Mrgavyadha “deer hunter”, or Lubdhaka “hunter”. As Mrgavyadha, the star represents Rudra (Shiva). The star is referred as Makarajyoti in Malayalam and has religious significance to the pilgrim center Sabarimala.  In Scandinavia, the star has been known as Lokabrenna (“burning done by Loki”, or “Loki’s torch”). In the astrology of the Middle Ages, Sirius was a Behenian fixed star, associated with beryl and juniper. Its astrological symbol Sirius was listed by Heinrich Cornelius Agrippa.

Many cultures have historically attached special significance to Sirius, particularly in relation to dogs. It is often colloquially called the “Dog Star” as the brightest star of Canis Major, the “Great Dog” constellation. Canis Major was classically depicted as Orion’s dog. The Ancient Greeks thought that Sirius’s emanations could affect dogs adversely, making them behave abnormally during the “dog days”, the hottest days of the summer. The Romans knew these days as dies caniculares, and the star Sirius was called Canicula, “little dog”. The excessive panting of dogs in hot weather was thought to place them at risk of desiccation and disease. In extreme cases, a foaming dog might have rabies, which could infect and kill humans they had bitten. Homer, in the Iliad, describes the approach of Achilles toward Troy in these words:

Sirius rises late in the dark, liquid sky

On summer nights, star of stars,

Orion’s Dog they call it, brightest

Of all, but an evil portent, bringing heat

And fevers to suffering humanity.

In Iranian mythology, especially in Persian mythology and in Zoroastrianism, the ancient religion of Persia, Sirius appears as Tishtrya and is revered as the rain-maker divinity (Tishtar of New Persian poetry). Beside passages in the sacred texts of the Avesta, the Avestan language Tishtrya followed by the version Tir in Middle and New Persian is also depicted in the Persian epic Shahnameh of Ferdowsi. Due to the concept of the yazatas, powers which are “worthy of worship”, Tishtrya is a divinity of rain and fertility and an antagonist of apaosha, the demon of drought. In this struggle, Tishtrya is depicted as a white horse.

In Chinese astronomy Sirius is known as the star of the “celestial wolf” (Chinese and Japanese: 天狼 Chinese romanization: Tiānláng; Japanese romanization: Tenrō; Korean and romanization: 천랑 /Tsŏnrang) in the Mansion of Jǐng (井宿). Many nations among the indigenous peoples of North America also associated Sirius with canines; the Seri and Tohono O’odham of the southwest note the star as a dog that follows mountain sheep, while the Blackfoot called it “Dog-face”. The Cherokee paired Sirius with Antares as a dog-star guardian of either end of the “Path of Souls”. The Pawnee of Nebraska had several associations; the Wolf (Skidi) tribe knew it as the “Wolf Star”, while other branches knew it as the “Coyote Star”. Further north, the Alaskan Inuit of the Bering Strait called it “Moon Dog”.

Several cultures also associated the star with a bow and arrows. The ancient Chinese visualized a large bow and arrow across the southern sky, formed by the constellations of Puppis and Canis Major. In this, the arrow tip is pointed at the wolf Sirius. A similar association is depicted at the Temple of Hathor in Dendera, where the goddess Satet has drawn her arrow at Hathor (Sirius). Known as “Tir”, the star was portrayed as the arrow itself in later Persian culture.

Sirius is mentioned in Surah, An-Najm (“The Star”), of the Qur’an, where it is given the name الشِّعْرَى (transliteration: aš-ši‘rā or ash-shira; the leader). The verse is: “وأنَّهُ هُوَ رَبُّ الشِّعْرَى”, “That He is the Lord of Sirius (the Mighty Star).” (An-Najm:49) Ibn Kathir said in his commentary “that it is the bright star, named Mirzam Al-Jawza’ (Sirius), which a group of Arabs used to worship”.  The alternate name Aschere, used by Johann Bayer, is derived from this.

In theosophy, it is believed the Seven Stars of the Pleiades transmit the spiritual energy of the Seven Rays from the Galactic Logos to the Seven Stars of the Great Bear, then to Sirius. From there is it sent via the Sun to the god of Earth (Sanat Kumara), and finally through the seven Masters of the Seven Rays to the human race.


The Dogon people are an ethnic group in Mali, West Africa, reported by some researchers to have traditional astronomical knowledge about Sirius that would normally be considered impossible without the use of telescopes. According to Marcel Griaule, they knew about the fifty-year orbital period of Sirius and its companion prior to western astronomers. In his pseudoarcheology book The Sirius Mystery, Robert Temple claimed that the Dogon people have a tradition of contact with intelligent extraterrestrial beings from Sirius.

Doubts have been raised about the validity of Griaule and Dieterlein’s work. In 1991, anthropologist Walter van Beek concluded about the Dogon, “Though they do speak about sigu tolo [which is what Griaule claimed the Dogon called Sirius] they disagree completely with each other as to which star is meant; for some it is an invisible star that should rise to announce the sigu [festival], for another it is Venus that, through a different position, appears as sigu tolo. All agree, however, that they learned about the star from Griaule.”

Noah Brosch claims that the cultural transfer of relatively modern astronomical information could have taken place in 1893, when a French expedition arrived in Central West Africa to observe the total eclipse on 16 April.